查看原文
其他

重磅!世界首个发作性动作诱发性运动障碍诊断和治疗专家共识发布

*仅供医学专业人士阅读参考



感谢曹立等神经遗传专家团队




临床上,遇到坐立起身或快速跑步时突发不自主舞蹈样动作,持续几秒至几十秒,症状消失后又如同正常人的患者,我们常常会考虑癫痫、精神疾病,然而真实的病因却可能是——发作性运动诱发性运动障碍(Paroxysmal Kinesigenic Dyskinesia,PKD),PKD因其以肌张力障碍、舞蹈样动作等发作性肢体不自主运动为主要特征,常在确诊前被误诊为癫痫、精神疾病等其他疾病。

图1:曹立教授做的问卷调查结果(数据来自185名最后确诊为PKD的患者)

针对上述情况,由上海交通大学附属第六人民医院的曹立教授(原上海瑞金医院)牵头,国内多名神经内科专家共同制定了中国PKD诊疗专家共识,希望通过规范化的诊治流程,来提高临床医生对PKD的认识,内容主要包含PKD的临床表现、病因、临床诊断标准和治疗建议,以及在国内医院进行的PKD患者的遗传分析结果。让我们一起来学习吧!


一、概述

发作性运动障碍是一组由不同病因导致的以发作性肢体不自主运动为主要特征的神经系统疾病,不自主运动可表现肌张力障碍、舞蹈样动作或投掷动作等。

根据诱发因素的不同,分为PKD、发作性非动作诱发性运动障碍(Paroxysmal non-kinesigenic Dyskinesia,PNKD)以及发作性过度运动诱发性运动障碍(paroxysmal Exercise-induced Dyskinesia,PED)

其中发作性动作诱发性运动障碍是最常见的发作类型,由Kertesz于1976年首次描述报道,临床上以突然动作所诱发的非随意运动障碍为主要表现[1]。PKD可分为原发性及继发性两类,前者与遗传因素相关,呈常染色体显性遗传伴不完全外显[2,3]。2011年PKD首个致病基因PRRT2被明确[4-6]。后续较多研究进一步揭示了PKD的临床及遗传特点。为提高对PKD的认识及诊治水平,文中综合国内专家意见制定了PKD诊断和治疗专家共识。  


二、临床表现

1

流行病学特点:



PKD的发病率约在1:150000左右,患者最多分布于亚洲(主要为中国及日本),其次多见于北美洲及欧洲[7,8]。原发性PKD的发病年龄多在数月龄至20岁之间,其中以7~15岁青少年高发,男性多发,男女发病比例约为2∶1~4∶1[3,8,9],散发病例中男女发病差异更大,约为4∶1~8∶1[10]

2

诱发因素:



典型PKD发作多由突然动作诱发,常见的诱发动作包括但不限于起立、跑步、上下车、过红绿灯等动作[3,9,10]。运动速度及幅度的改变、或在持续动作中加入其他动作,甚至有动作意图时也可诱发。在情绪紧张、声音或图像刺激、过度通气等情况下更易诱发发作[10]

3

发作预感:



PKD的发作预感是指在肢体不自主动作出现之前患者体验到的一种躯体异常感觉,被认为是发作过程中的一部分[9]。约78%-82%左右的PKD患者可有发作预感[9],患者对这种躯体异常感觉往往难以准确描述,常见的表述包括肢体乏力感、肌肉紧张感以及肢体麻木等[2,9]。部分患者在出现发作预感后可通过减慢或停止动作以避免发作[10],有时可仅有发作预感而不出现不自主运动[9]

4

发作形式:



包括单侧或双侧肢体的肌张力障碍、舞蹈样动作、投掷样动作或上述类型混合出[2,10]。其中以肌张力障碍最为多见、其次为舞蹈样动作,而投掷样动作最为少见[9,11]。发作多为偏侧发作,亦可双侧或双侧交替发作。约70%患者发作时出现怪异表情和构音障碍,构音障碍可能与面部或喉部肌肉肌张力障碍有关[9,12]

5

发作持续时间及频率:



98%以上患者发作持续时间小于1 min[2,9],对于发作持续时间过长者,需排除继发因素的可能[9]。在不同个体及疾病不同阶段,PKD发作频率变异较大,可由一年发作数次至每日发作100余次不等[9,12,13]。多数PKD发作频率于青春期达到高峰,20岁后发作频率减少,部分患者30岁后很少发作甚至自愈[9]

6

临床分型:



发作性动作诱发性运动障碍根据有无伴随其他疾病可分为单纯型及复杂型。

单纯型:患者仅出现突然动作诱发后的不自主运动发作。

复杂型:部分患者除运动发作外可合并有其他神经系统症状,其中较多合并良性家族性婴儿惊厥、热性惊厥、偏头痛、偏瘫型偏头痛、发作性共济失调、癫痫等发作性疾病[2,14-16]。极少数可合并发育迟滞、智能减退、语言功能障碍、自闭等[17-19]


三、病因及发病机制

PKD根据病因可分为原发性与继发性[20]。目前多数研究认为,原发性家族性PKD多为遗传所致,遗传方式呈常染色体显性遗传,可伴有不完全外显,其外显率约在60%-90%之间[21]。遗传学研究目前发现有多个基因与PKD发病相关,包括PRRT2、PNKD、SLC2A1、SCN8A、KCNMA1、KCNA1、DEPDC5[4,5,15,22-28]

PRRT2是PKD最主要的致病基因[8,9,15],该基因定位于16p11.2,包含4个外显子,编码340个氨基酸。目前世界范围内共报道80余种致病变异[9],变异种类以无义变异、移码变异为主,其次为错义变异。在所发现的突变中c.649dupC为突变热点[9,12,29]。PRRT2具体功能以及其致病机制目前仍不明确。PRRT2是SNARE复合体的组成部分,与SNAP-25、突触结合蛋白-1、突触结合蛋白-2和突触囊泡蛋白-2存在相互作用,使SNARE复合物具有钙敏感性,对维持突触的正常功能起作用[30,31],并且参与负向调节钠离子通道[32]

目前基底节-丘脑-皮质回路异常被认为是PKD的病理生理基础[33-36]。针对PKD患者的fMRI相关研究发现,PKD患者存在丘脑与运动皮层之间的联系异常,且异常的程度与疾病持续时间呈正相关[37]。而在携带有PRRT2基因突变的患者中观察到丘脑-前额叶连接降低,表明PRRT2突变导致丘脑-前额叶低整合和运动抑制功能障碍[38]。而进一步的基础研究现的结果同样发现PRRT2突变导致的突触前功能障碍、神经递质释放异常以及NA+通道的负性调节障碍引起的细胞兴奋性紊乱可能是疾病发生的核心[31,32]

但仍有约半数左右的原发性PKD患者未发现确切遗传突变,提示PKD可能还存在其他致病基因,这也是后期探究的方向之一。

少数情况下,PKD可继发于其他因素或与其他疾病合并存在[39],例如中枢神经系统脱髓鞘疾病、脑血管病、脑外伤、代谢异常等[39-41]。其中以多发性硬化(MS)引起的继发性PKD最为多见,尤其是复发-缓解型MS[42-46]。MS相关的PKD其病变部位包括丘脑、豆状核、苍白球以及内囊[43],脱髓鞘病变可引起轴突的敏感性增高从而导致症状的出现[43]。而基底节区钙化,包括特发性基底节钙化或继发于甲状旁腺功能减退、假性甲状旁腺功能减退出现的基底节钙化亦会导致PKD症状出现[47-51],这是继发性PKD的另一较常见病因。


四、诊断以及鉴别诊断

1

鉴别诊断:



(1)癫痫:PKD具有发作性、重复性及短暂性的特点,并对部分抗癫痫药物具有良好反应,故在临床上易误诊为癫痫,尤其是额叶癫痫。额叶癫痫是儿童期常见的部分性癫痫,部分额叶起源的癫痫发作如过度运动自动症也可伴舞蹈样动作和肌张力障碍,并且具有反复发作、短暂、刻板等特点。其发作间期脑电图正常,发作期背景活动被大量运动伪差覆盖,且发作时意识障碍轻微,故较难鉴别。但PKD每次临床发作均具有明确的运动源性诱因,发作时意识始终保持清晰,以此可与额叶癫痫鉴别。此外,额叶癫痫清醒期和睡眠期均有发作,甚至睡眠期发作更为多见,而PKD仅出现于清醒期,亦可区别。

(2)原发性发作性非动作诱发性运动障碍(Paroxysmal NonkinesigenicDyskinesia,PNKD):多于幼儿期起病,临床发作多由摄入茶、咖啡、酒精、精神压力、疲劳等非运动因素所诱发。临床症状表现为多由单侧肢体逐渐累及其他部位的肌张力障碍、舞蹈样动作或手足徐动。发作持续时间较PKD发作更长,多为10分钟至1小时[2,52],少数患者持续时间更长。PNKD发作频率较PKD少,通常为每周发作1次至数次。约半数患者发作前可有预感,表现为肢体僵硬感、笨拙感或乏力感。
(3)发作性过度运动诱发性运动障碍(Paroxysmal Exercise-Induced Dyskinesia,PED):原发性PED的发病年龄多在2~30岁之间。PED临床发作由长时间或持续性运动(5~30 min)诱发,且不被寒冷、酒精、咖啡等非运动因素诱发[53]。发作持续时间5~45min,一般不超过2h。
(4)心因性疾病及假性发作:心因性运动障碍和PKD均会出现运动障碍发作且发作间期神经查体阴性。此外,多数PKD患者合并存在有焦虑或抑郁情绪[54],因而在临床中一部分患者易被认为是心因性疾病或假性发作。易分散性、临床表现的变异性和具有暗示性是精神病性疾病的特征[55]。其他提示心因性疾患而非PKD的因素包括心因性疾病多在成年起病,合并其他精神病性体征,存在医学上无法解释的躯体症状以及对药物的非典型反应等[55,56]。高抬腿诱发试验也可帮助医生观察到临床发作从而准确诊断。
(5)抽动症:抽动是短暂的肌肉抽搐或肌张力异常,其持续时间通常比PKD发作短。
(6)过度惊跳症:过度惊跳症表现为突然的噪音或触摸所诱发的复杂异常运动障碍发作,似与PKD相同[55,57]。过度惊跳症多在出生后甚至在孕期末三月起病,通常一些患者未预期的刺激(多数是声音)可以诱发临床症状出现,典型表现为眨眼以及躯干肌痉挛[58],而无意识状态改变。PKD发作通常发生在青少年中。此外,与生理性的惊吓反应不同,过度惊跳症在新生儿和幼儿中引起的肢体僵硬时间更长[59,60]
(7)Sandifer综合征:胃食管反流后进食后出现阵发性头倾斜的幼儿应怀疑有Sandifer综合征[55,61]
(8)良性阵发性斜颈(Benign paroxysmal torticollis,BPT)[62]:BPT表现为反复发作的异常头部姿势,从一侧到另一侧交替出现,症状可持续几分钟到几天。该疾病通常发生在婴儿3月龄左右,且后期可合并出现偏头痛,这一现象提示BPT可被认为是年龄依赖性偏头痛[63]。该疾病通常不需要治疗,除非出现易怒、不适或呕吐的情况下则进行相应对症处理。
(9)婴儿短暂性肌张力障碍[62]:婴儿短暂性肌张力障碍包括阵发性上肢姿势异常,偶尔伴有躯干和一侧下肢受累[64]。发作间期体格检查及神经影像检查正常。发病年龄一般在5至10个月之间,病情在3个月至5年之间可逐渐缓解,无发育或神经异常。婴儿短暂性肌张力障碍的病因和病理生理机制尚不清楚。
(10)婴儿早期良性肌阵挛(Benign myoclonus of early infancy,BMEI)[62]:BMEI最初被描述为一种非痫性阵发性运动障碍,其特征是头部和/或上肢出现肌阵挛性抽搐,通常成串出现,类似婴儿痉挛症。发作时患儿意识清晰,且通常在清醒期出现,在睡眠或困倦时鲜有发生。发作时脑电图,神经查体和发育均正常。该疾病的发作往往密集出现,经常每日发作数次,每次发作持续几秒钟。情绪兴奋或低落、姿势变化或感觉刺激均可能诱发发作[63]。发病多出现在1岁以内(主要在4到7个月之间),通常在2岁时停止发作,部分可能持续到儿童时期。其病理生理机制尚不清楚,不需要特殊治疗。

2

临床诊断标准:


根据对中国大样本PKD患者的临床研究结果[9],对临床诊断标准作如下修改,即:


(1)拟诊PKD患者必须具有所有核心症状;

(2)支持依据可辅助临床诊断;
(3)须排除继发性因素,如血管性、脱髓鞘性、代谢性等病因。特别是当出现警示标志中的任意一项时,应进行全面评估以排除继发性PKD可能。具体评估项目包括:
a.甲状腺功能评估:血清T3/FT3、T4/FT4、促甲状腺素(TSH)水平测定,结合患者实验室结果必要时完善甲状腺超声及摄碘率检查;
b.钙磷代谢评估:血清钙、磷测定、甲状旁腺素及降钙素测定,完善头颅CT排查有无颅内钙化;
c.血糖测定;
d.胆红素测定,尤其在新生儿中需注意非结合胆红素水平,以排查胆红素脑病可能;
e.血清铜蓝蛋白;
f.头颅MRI;
g.脑电图:部分原发性PKD患者在发作期和发作间期可出现异常脑电表现,因此脑电图异常并不能排除原发性PKD的诊断。但对于存在脑电异常的患者,临床医师应进行全面评估以排除继发性因素;
h.神经心理评估。
(4)原地高抬腿试验[9]:鉴于发作性运动障碍疾病的特点,若能观察到临床发作能明显提高诊断的准确性。因此建议临床医师在患者就诊时可通过高抬腿运动诱发临床发作,以观察具体的发作特点。
具体操作[9]:患者进行原地高抬腿运动,嘱患者在出现发作预感时立刻停止运动,观察患者临床发作情况(包括发作形式、持续时间、有无合并面部受累等),上述情况视为阳性结果。若持续进行30秒仍无发作,则为阴性。需注意患者若处于临床自愈期或服用药物控制症状后可无发作诱发。此外,若患者进行该试验前刚经历发作,其试验结果亦可能为阴性。


3

基因诊断:



原发性PKD多与遗传因素相关,最常见突变基因为PRRT2,约1/3原发性PKD患者由该基因突变所导致[9,12],其中突变c.649dupC为突变热点,约76% PRRT2基因突变PKD患者携带该突变[9,12,29]。在PKD患者中亦发现由神经系统发作性疾病相关基因突变所致,基因包括PNKD,SLC2A1,SCN8A,KCNMA1,KCNA1,DEPDC55[4,5,15,22-28]

鉴于PKD是具有自愈倾向且有有效治疗药物的良性疾病,基因诊断需建立在患者充分知情同意情况下进行;其次,基因排查结果阴性不能排除PKD的诊断,PKD诊断仍以临床诊断为主;最后,不建议对无症状人群、未出生胎儿以及婴幼儿进行PKD疾病相关基因的检测以及产前诊断。



五、治疗

PKD的治疗包括药物治疗以及非药物治疗。需要指出的是,继发性PKD因针对不同病因进行原发病治疗。

原发性PKD为具有自愈倾向的良性疾病,故是否需药物治疗应结合患者年龄、发作频率、发作程度、发作对患者生活心理影响以及治疗意愿等因素综合考虑。


1

药物治疗



对于发作频繁、发作程度较重(如发作累及双侧肢体或引起站立不稳、摔倒等)、发作对患者造成较重心理负担以及有较强主观意愿希望控制发作的患者可应用药物治疗。原发性PKD的治疗药物目前主要为抗癫痫药物,尤其是钠离子通道阻滞剂,其中首选卡马西平/奥卡西平。多项临床研究结果提示卡马西平/奥卡西平对控制PKD发作具有良好效果[9,12,65,66]。约85%以上的病人应用小剂量卡马西平(50-200mg/天)或奥卡西平(75-300mg/天)可完全控制发作,约有10%左右的病人可达到部分控制(临床发作减少75%及以上)[9]。需要指出的是,不同患者对于治疗的满意程度不同,对于部分患者而言存在预感而不出现运动发作是可以接受的,但也有部分患者要求完全控制。因此,PKD的药物治疗应是个体化的,使用药物前医师应针对疾病的预后、药物使用后的预期效果以及药物可能产生的副反应与患者进行充分沟通。

对于需药物治疗的病人,可予卡马西平50mg或奥卡西平75mg起始,每日一次,后根据症状控制情况酌情调整剂量[9,66]。对于幼儿及儿童患者,由于体重不同,建议临床医师根据体重调整卡马西平用量,起始可从1mg/kg逐渐增加滴定。大部分患者对卡马西平耐受良好,少部分患者服用卡马西平可能出现嗜睡、头昏、肝酶升高等不良反应。为避免卡马西平可能引起的嗜睡、头昏症状,可酌情将服药时间调整为睡前。在应用卡马西平前应对患者进行HLA-B*1502等位基因型检测,以尽可能避免Steven-Johnson综合征的发生[9,12]。而对于HLA-B*1502等位基因型阳性患者或不能耐受卡马西平不适反应的患者可改用其他类型钠离子通道阻滞剂,如拉莫三嗪、托吡酯、苯妥英钠、苯巴比妥。除钠离子通道阻滞剂外,其余类型抗癫痫药物疗效欠佳。


2

非药物治疗



主要包括对患者的心理疏导与指导。不良的心理状态可加重PKD的发作频率及严重程度。此外,针对PKD患者心理情况的研究发现,PKD临床发作对患者,尤其是青少年患者造成一定程度的心理影响,约有大于1/3的PKD患者存在不同程度的焦虑与抑郁情绪[54]。因此,避免各种因素引起的精神压力以及保证休息可以减少PKD的发作频率。而PKD患者的心理压力主要归究于对疾病病因、发展以及转归的认知缺乏。故在临床确诊PKD后对患者及时进行疾病宣教尤为必要,临床医师应帮助患者认识PKD是一种有确切治疗药物且具有自愈倾向的良性疾病,以消除心理因素对患者生活、工作造成的不良影响。


3

特殊人群治疗:



(1)伴有良性家族性婴儿惊厥症(Benign Familial Infantile Epilepsy)的PKD患者:

良性家族性小儿癫痫(BFIE)是一种婴儿型丛集性癫痫,通常可以完全康复[67]。多数BFIE由PRRT2基因突变导致,除此以外SCN2A、SCN8A、KCNQ2基因突变亦可引起。对于良性家族性婴儿惊厥症患者,基因筛查对于后一步的诊疗方案制定具有指导意义。
然而,需要强调的是,目前尚无已知的干预措施可以降低BFIE患者后续发展为PKD的风险,即使是具有PRRT2基因突变的患者[7]。对于具有PRRT2基因突变的BFIE患者,尽管对卡马西平/奥卡西平的治疗效果尚未得到很好的研究,但鉴于其在PKD治疗中的良好效果,可以作为首选的抗癫痫药物[7]。而在癫痫持续状态发生时,可以使用苯二氮䓬类药物,包括劳拉西泮,地西泮或咪达唑仑[7]。然而,PRRT2基因突变相关的癫痫发作对苯二氮䓬类药物的反应相对较差[7]
(2)孕期管理:
部分女性患者在怀孕期间发作频率有所减轻,这一现象的机制尚不明确。但是,产前暴露于抗癫痫药物可能会增加胎儿畸形的风险(取决于所用药物,剂量和服用药物的妊娠阶段)。因此,应在怀孕之前与患者充分沟通在怀孕期间使用抗癫痫药物的风险和益处[7]。对于发作频率较低、发作程度较轻的女性患者,可以考虑在妊娠前或期间中止抗癫痫药物的使用[7]


六、总结

PKD是一种具有高度临床和遗传异质性的阵发性运动障碍。虽然PKD是最常见的阵发性运动障碍类型,但其发病率仍然较低,这一专家共识是在对国内PKD患者进行大规模临床和遗传学分析的基础上提出的,旨在帮助建立PKD的标准化临床评价和治疗手段。PKD的诊断主要基于临床特征,需要进行必要的评估以排除继发性病因,治疗上推荐进行个性化的药物和心理治疗。

专家简介


曹立教授

医学博士、主任医师、博士生导师


•上海交通大学附属第六人民医院神经科主任医师;

•第三届“中国杰出神经内科青年医师”;

•美国加州大学旧金山分校神经内科访问学者;

•中华医学会神经病学分会神经遗传专业组委员;

•中国医师协会神经内科分会神经遗传学组委员;

•上海医学会神经内科专科分会神经免疫遗传生化学组委员/副组长;

•上海医师协会神经内科分会委员;

•中国神经科学学会神经退行性疾病分会委员;

•中国研究型医院学会罕见病分会理事;

•中国医疗保健国际交流促进会神经病学分会委员;

•风信子亨廷顿舞蹈症关爱中心理事;

•长期致力于运动障碍、脑白质病、神经遗传和神经肌肉疾病的临床和转化研究工作,先后主持国家自然科学基金5项,在国内外杂志发表包括Brain、Neurology等在内的国内外论文80余篇。


参考文献:

[1] Kertesz A. Paroxysmal kinesigenic choreoathetosis. An entity withinthe paroxysmal choreoathetosis syndrome. Description of 10 cases, including 1 autopsied. Neurology 1967, 17(7):680-690.[2] Bruno MK, Hallett M,Gwinn-Hardy K, Sorensen B,Considine E, Tucker S, et al. Clinicalevaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnosticcriteria. Neurology 2004, 63(12):2280-2287.[3] Tomita H, Nagamitsu S, Wakui K, Fukushima Y, Yamada K, Sadamatsu M, et al. Paroxysmal kinesigenic choreoathetosis locus maps tochromosome 16p11.2-q12.1. Am J Hum Genet 1999, 65(6):1688-1697.[4] Chen WJ, Lin Y,Xiong ZQ, Wei W, Ni W, Tan GH, et al. Exome sequencing identifiestruncating mutations in PRRT2 thatcause paroxysmal kinesigenic dyskinesia. Nat Genet 2011, 43(12):1252-1255.[5] Wang JL, Cao L, LiXH, Hu ZM, Li JD, Zhang JG, et al. Identification of PRRT2 as the causative gene of paroxysmalkinesigenic dyskinesias. Brain 2011, 134(Pt 12):3493-3501.

[6] Bhatia KP, Schneider SA. Identification of PRRT2 as the causative gene ofparoxysmal kinesigenic dyskinesia. Mov Disord 2012, 27(6):707.

[7]     Ebrahimi-Fakhari D, Moufawad El Achkar C, Klein C. PRRT2-associatedparoxysmal movement disorders. In: Adam MP, Ardinger HH, Pagon RA, et al (Eds). GeneReviews. Seattle (WA): University ofWashington, Seattle, 1993.

[8] Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolvingspectrum of PRRT2-associated paroxysmal diseases. Brain 2015, 138(Pt 12):3476-3495.

[9]  Huang XJ, Wang SG,Guo XN, Tian WT, Zhan FX, Zhu ZY, et al. The phenotypic and geneticspectrum of paroxysmal kinesigenic dyskinesia in China. Mov Disord 2020; 35(8):1428-1437.

[10]  Bhatia KP. Paroxysmal dyskinesias. Mov Disord 2011, 26(6):1157-1165.

[11]  Kim SY, Lee JS, KimWJ, Kim H, Choi SA, Lim BC, et al. Paroxysmal dyskinesia inchildren: from genes to the clinic. J Clin Neurol 2018, 14(4):492-497.

[12]  Huang XJ, Wang T,Wang JL, Liu XL, Che XQ, Li J, et al. Paroxysmal kinesigenicdyskinesia: Clinical and genetic analyses of 110 patients. Neurology 2015,85(18):1546-1553.

[13]  Latorre A, Bhatia KP. Treatment ofparoxysmal dyskinesia. Neurol Clin 2020, 38(2):433-447.

[14]  Tan LC, Methawasin K, Teng EW, Ng AR,Seah SH, Au WL, et al. Clinico-geneticcomparisons of paroxysmal kinesigenic dyskinesia patients with and without PRRT2 mutations. Eur J Neurol 2014,21(4):674-678.

[15]  Erro R, Sheerin UM,Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically provencases and a new classification. Mov Disord 2014, 29(9):1108-1116.

[16]  Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, et al. PRRT2 linksinfantile convulsions and paroxysmal dyskinesia with migraine. Neurology 2012,79(21):2097-2103.

[17]  Erro R, Bhatia KP. Unravelling of theparoxysmal dyskinesias. J Neurol Neurosurg Psychiatry 2019, 90(2):227-234.

[18]  Delcourt M, Riant F,Mancini J, Milh M, Navarro V, Roze E, et al. Severe phenotypic spectrumof biallelic mutations in PRRT2 gene.J Neurol Neurosurg Psychiatry 2015, 86(7):782-785.

[19]  Weber A, Kohler A,Hahn A, Neubauer B, Muller U. Benigninfantile convulsions (IC) andsubsequent paroxysmal kinesigenic dyskinesia (PKD) in a patient with 16p11.2 microdeletion syndrome. Neurogenetics 2013,14(3-4):251-253.

[20]  Demirkiran M, Jankovic J. Paroxysmaldyskinesias: clinical features and classification. Ann Neurol 1995, 38(4):571-579.

[21]  van Vliet R, Breedveld G, de Rijk-van Andel J, Brilstra E, Verbeek N, Verschuuren-Bemelmans C, et al. PRRT2 phenotypesand penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology2012, 79(8):777-784.

[22]  Yin XM, Lin JH, CaoL, Zhang TM, Zeng S, Zhang KL, et al. Familial paroxysmalkinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Hum Mol Genet 2018, 27(4):757-758.

[23]  Tian WT, Huang XJ,Mao X, Liu Q, Liu XL, Zeng S, et al. Proline-rich transmembraneprotein 2-negative paroxysmal kinesigenic dyskinesia: Clinical and geneticanalyses of 163 patients. Mov Disord 2018, 33(3):459-467.

[24]  Gardella E, Becker F, Moller RS, Schubert J, Lemke JR, Larsen LH, et al. Benign infantile seizures and paroxysmal dyskinesia caused byan SCN8A mutation. Ann Neurol 2016,79(3):428-436.

[25]  Gardiner AR, Jaffer F, Dale RC, Labrum R,Erro R, Meyer E, et al. Theclinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015,138(Pt 12):3567-3580.

[26]  Wang HX, Li HF, LiuGL, Wen XD, Wu ZY. Mutationanalysis of MR-1, SLC2A1, and CLCN1 in 28PRRT2-negative paroxysmal kinesigenic dyskinesia patients. Chin Med J (Engl) 2016, 129(9):1017-1021.

[27]  Fabbri M, Marini C,Bisulli F, Di Vito L, Elia A, Guerrini R, et al. Clinical and polygraphicstudy of familial paroxysmal kinesigenic dyskinesia with PRRT2 mutation. Epileptic Disord 2013, 15(2):123-127.

[28]  Groffen AJ, Klapwijk T, van Rootselaar AF, Groen JL, Tijssen MA. Genetic and phenotypic heterogeneity in sporadic andfamilial forms of paroxysmal dyskinesia. J Neurol 2013, 260(1):93-99.

[29]  Cao L, Huang XJ,Zheng L, Xiao Q, Wang XJ, Chen SD. Identification of a novel PRRT2 mutation in patients with paroxysmal kinesigenic dyskinesiasand c.649dupC as a mutation hot-spot. Parkinsonism Relat Disord 2012, 18(5):704-706.

[30]  Valente P, Castroflorio E, Rossi P, Fadda M,Sterlini B, Cervigni RI, et al.PRRT2 is a key component of the Ca(2+)-dependent neurotransmitter release machinery. Cell Rep 2016,15(1):117-131.

[31]  Liu YT, Nian FS,Chou WJ, Tai CY, Kwan SY, Chen C, et al. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmentaldefects. Oncotarget 2016, 7(26):39184-39196.

[32]  Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, et al. PRRT2 controls neuronal excitability by negatively modulatingNa channel 1.2/1.6 activity. Brain 2018, 141(4):1000-1016.

[33]  Joo EY, Hong SB, TaeWS, Kim JH, Han SJ, Seo DW, et al. Perfusion abnormality of thecaudate nucleus in patients with paroxysmal kinesigenic choreoathetosis. Eur JNucl Med Mol Imaging 2005, 32(10):1205-1209.

[34]  Shirane S, Sasaki M,Kogure D, Matsuda H, HashimotoT. Increased ictal perfusion of the thalamus in paroxysmal kinesigenicdyskinesia. J Neurol Neurosurg Psychiatry 2001, 71(3):408-410.

[35]  Zhou B, Chen Q,Zhang Q, Chen L, Gong Q, Shang H, et al. Hyperactive putamen in patientswith paroxysmal kinesigenic choreoathetosis: a resting-state functionalmagnetic resonance imaging study. Mov Disord 2010, 25(9):1226-1231.

[36]  Kim MO, Im JH, ChoiCG, Lee MC. Proton MR spectroscopic findings inparoxysmal kinesigenic dyskinesia. Mov Disord 1998, 13(3):570-575.

[37]  Li HF, Yang L, Yin D, Chen WJ, Liu GL, NiW, et al. Associations between neuroanatomicalabnormality and motor symptoms in paroxysmal kinesigenic dyskinesia. ParkinsonismRelat Disord 2019, 62:134-140.

[38]  Long Z, Xu Q, MiaoHH, Yu Y, Ding MP, Chen H, et al. Thalamocorticaldysconnectivity in paroxysmal kinesigenic dyskinesia: Combining functionalmagnetic resonance imaging and diffusion tensor imaging. Mov Disord 2017,32(4):592-600.

[39]  Blakeley J, Jankovic J. Secondary paroxysmaldyskinesias. Mov Disord 2002, 17(4):726-734.

[40]  Berger JR, Sheremata WA, Melamed E. Paroxysmal dystonia as the initial manifestation ofmultiple sclerosis. Arch Neurol 1984, 41(7):747-750.

[41]  Cottrill N, McCully B, Payne M. Paroxysmal kinesigenic dyskinesia presented followingconcussion. J Mov Disord 2019, 12(1):52-53.

[42]  Candeias da Silva C, Bichuetti DB, Azevedo Silva SMC, Ferraz HB, Oliveira EML, Borges V. Movement disordersin multiple sclerosis and neuromyelitis optica: A clinical marker ofneurological disability. Parkinsonism Relat Disord 2018, 51:73-78.

[43]  Frohlich K, Winder K, Linker RA, Huhn K,Engelhorn T, Dorfler A, et al. Lesioncorrelates of secondary paroxysmal dyskinesia in multiple sclerosis. J Neurol 2018,265(10):2277-2283.

[44]  Ciampi E, Uribe-San-Martin R, Godoy-Santin J, Cruz JP, Carcamo-Rodriguez C, Juri C. Secondaryparoxysmal dyskinesia in multiple sclerosis: Clinical-radiological features andtreatment. Case report of seven patients. Mult Scler 2017, 23(13):1791-1795.

[45]  Pop R, Kipfer S. Paroxysmal kinesigenicdyskinesia-like phenotype in multiple sclerosis. Mult Scler 2017, 23(13):1795-1797.

[46]  Baguma M, Ossemann M. Paroxysmal kinesigenicdyskinesia as the presenting and only manifestation of multiple sclerosis aftereighteen months of follow-up. J Mov Disord 2017, 10(2):96-98.

[47]  Kostic VS, Petrovic IN. Brain calcificationand movement disorders. Curr Neurol Neurosci Rep 2017, 17(1):2.

[48]  Wang C, Ma X, Xu X, Huang B, Sun H, LiL, et al. A PDGFBmutation causes paroxysmal nonkinesigenic dyskinesia with brain calcification. MovDisord 2017, 32(7):1104-1106.

[49]  Kwon YJ, Jung JM,Choi JY, Kwon DY. Paroxysmal kinesigenic dyskinesia inpseudohypoparathyroidism: is basal ganglia calcification a necessary finding? JNeurol Sci 2015, 357(1-2):302-303.

[50]  Zhu M, Zhu X, Wan H, Hong D. Familial IBGC caused by SLC20A2mutation presenting as paroxysmal kinesigenic dyskinesia. ParkinsonismRelat Disord 2014, 20(3):353-354.

[51]  Chung EJ, Cho GN,Kim SJ. A case of paroxysmal kinesigenic dyskinesia in idiopathic bilateralstriopallidodentate calcinosis. Seizure 2012, 21(10):802-804.

[52]  Silveira-Moriyama L, Kovac S, Kurian MA, Houlden H, Lees AJ, Walker MC,et al. Phenotypes, genotypes,and the management of paroxysmal movement disorders. Dev Med Child Neurol 2018,60(6):559-565.

[53]  Lance JW. Familial paroxysmal dystonic choreoathetosis and itsdifferentiation from related syndromes. Ann Neurol 1977, 2(4):285-293.

[54]  Tian WT, Huang XJ,Liu XL, Shen JY, Liang GL, Zhu CX, et al. Depression, anxiety, and quality of life in paroxysmalkinesigenic dyskinesia patients. Chin Med J (Engl)2017, 130(17):2088-2094.

[55]  Waln O, Jankovic J. Paroxysmal movementdisorders. Neurol Clin 2015, 33(1):137-152.

[56]  Ganos C, Aguirregomozcorta M, Batla A, Stamelou M, Schwingenschuh P, Munchau A, et al. Psychogenic paroxysmal movement disorders--clinical featuresand diagnostic clues. Parkinsonism Relat Disord 2014, 20(1):41-46.

[57]  Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA. Startlesyndromes. Lancet Neurol 2006, 5(6):513-524.

[58]  Thomas RH, Chung SK,Wood SE, Cushion TD, Drew CJ, Hammond CL, et al. Genotype-phenotypecorrelations in hyperekplexia: apnoeas, learningdifficulties and speech delay. Brain 2013, 136(Pt 10):3085-3095.

[59]  Gherpelli JL, Nogueira AR Jr., Troster EJ, Deutsch AD, Leone CR, Brotto MW, et al. Hyperekplexia, a cause of neonatalapnea: a case report. Brain Dev 1995, 17(2):114-116.

[60]  Koning-Tijssen MA, Brouwer OF. Hyperekplexiain the first year of life. Mov Disord 2000, 15(6):1293-1296.

[61]  Kirkham FJ, Haywood P, Kashyape P, Borbone J, Lording A, Pryde K, et al. Movement disorder emergencies in childhood. Eur J PaediatrNeurol 2011, 15(5):390-404.

[62]  Garone G, Capuano A,Travaglini L, Graziola F,Stregapede F, Zanni G, et al. Clinicaland genetic overview of paroxysmal movement disorders and episodic ataxias. IntJ Mol Sci 2020, 21(10).

[63]  Canavese C, Canafoglia L, Costa C, Zibordi F,Zorzi G, Binelli S, et al. Paroxysmalnon-epileptic motor events in childhood: a clinical andvideo-EEG-polymyographic study. Dev Med Child Neurol 2012, 54(4):334-338.

[64]  Bonnet C, Roubertie A, Doummar D, Bahi-Buisson N, Cochen de Cock V, Roze E. Developmental andbenign movement disorders in childhood. Mov Disord 2010, 25(10):1317-1334.

[65]  Yang Y, Su Y, Guo Y, Ding Y, Xu S, JiangY, et al. Oxcarbazepine versus carbamazepine in thetreatment of paroxysmal kinesigenic dyskinesia. Int J Neurosci 2012, 122(12):719-722.

[66]  Li HF, Chen WJ, Ni W, Wang KY, Liu GL,Wang N, et al. PRRT2mutation correlated with phenotype of paroxysmal kinesigenic dyskinesia anddrug response. Neurology 2013, 80(16):1534-1535.

[67] van Roest A, Van de Vel A, Lederer D, Ceulemans B. The clinical andgenetic spectrum in infants with (an) unprovoked cluster(s) of focal seizures. Eur J Paediatr Neurol 2020, 24:148-153.


本文来源:医学界神经病学频道

本文作者:曹立教授等神经遗传专家团队

责任编辑:陆离先生


- End -




征  稿

欢迎投稿至编辑邮箱:yxjsjbx@yxj.org.cn

请注明:【投稿】医院+科室+姓名

来稿以word文档形式,稿酬从优

编辑微信:chenaFF0911


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存